Changes in Molecular Size Distribution of Cellulose during Attack by White Rot and Brown Rot Fungi.

نویسندگان

  • K Kleman-Leyer
  • E Agosin
  • A H Conner
  • T K Kirk
چکیده

The kinetics of cotton cellulose depolymerization by the brown rot fungus Postia placenta and the white rot fungus Phanerochaete chrysosporium were investigated with solid-state cultures. The degree of polymerization (DP; the average number of glucosyl residues per cellulose molecule) of cellulose removed from soil-block cultures during degradation by P. placenta was first determined viscosimetrically. Changes in molecular size distribution of cellulose attacked by either fungus were then determined by size exclusion chromatography as the tricarbanilate derivative. The first study with P. placenta revealed two phases of depolymerization: a rapid decrease to a DP of approximately 800 and then a slower decrease to a DP of approximately 250. Almost all depolymerization occurred before weight loss. Determination of the molecular size distribution of cellulose during attack by the brown rot fungus revealed single major peaks centered over progressively lower DPs. Cellulose attacked by P. chrysosporium was continuously consumed and showed a different pattern of change in molecular size distribution than cellulose attacked by P. placenta. At first, a broad peak which shifted at a slightly lower average DP appeared, but as attack progressed the peak narrowed and the average DP increased slightly. From these results, it is apparent that the mechanism of cellulose degradation differs fundamentally between brown and white rot fungi, as represented by the species studied here. We conclude that the brown rot fungus cleaved completely through the amorphous regions of the cellulose microfibrils, whereas the white rot fungus attacked the surfaces of the microfibrils, resulting in a progressive erosion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of Carbon Source on Cellulase Activity of White-rot and Brown-rot Fungi

Three white-rot fungi, Polyporus versicolor, Ganoderma applanatum, and Peniopbora “G,” produce an adaptive cellulase complex that can degrade both soluble cellulose (Cx) and microcrystalline cellulose (C1), a highly ordered form of cellulose. Production of Cx and C1 by the white-rot fungi was repressed by simple sugars. Cellualase preparations from three brown-rot fungi, Poria monticola, Lentin...

متن کامل

Biodegradation of Different Genotypes of Miscanthus by Wood Rot Fungi

Miscanthus, which is comprised of several different genotypes, is an important high-biomass crop with applications in the biofuel industry and in the formation of biocomposite materials. The overall composition of Miscanthus can be altered via degradation with wood rot fungi. The starting composition revealed that the cellulose content of Miscanthus x giganteus was higher than that in Miscanthu...

متن کامل

Decay mechanisms of brown-rot fungi

Brown-rot fungi, e.g. the dryrot fungus (Serpula lacrymans), are the most harmful microorganisms in wood in service in Finland and in temperate regions. Brownrot fungi cause wood decay primarly by attacking the carbohydrates of the cell walls, leaving lignin essentially undigested. At the initial stage of the decay, the brown-rot fungi seem to operate by a mechanism which cause extensive change...

متن کامل

Oxidative Degradation of Wood by Brown-Rot Fungi

Brown-rot fungi are Basidiomycetes that remove cellulose and other polysaccharides from wood, leaving an amorphous, brown, crumbly residue that is composed largely of lignin, hence the name brown-rot. Decay by brown-rot fungi is by far the most serious type of damage to wood in-service. These fungi cause structural failure before losses in total wood substance are detected. The effect of brown-...

متن کامل

Pectin degradation during colonization of wood by brown-rot fungi

Brown-rot decay results in rapid reduction in degree of polymerization of holocellulose, with concomitant strength loss without removing lignin. Development of new methods of wood protection will require focusing on early events in the sequence of fungal attack during colonization. Pit membranes (sapwood) of wood cell walls represent a readily available source of nonlignified carbohydrate, i.e....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 58 4  شماره 

صفحات  -

تاریخ انتشار 1992